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Abstract—In this paper, we address the problem of self- define the impact of a property as the extent to which services
adaptation in internet-scale service-oriented systems. edvices of one property value (e.g., location A) successfully famva

need to adapt by select the best neighboring services soldigsed | Vi xhibitin rent or rtv val
on local, limited information. In such complex systems, theylobal Igg;t?osrgsl?tgj services exhibiting afdrent property value (e.g.,

significance of the various selection parameters dynamidgl . . .
changes. We introduce a novel metric measuring the distribtion We structure this paper as follows: Section Il gives a

and potential impact of service properties dfecting such selection motivating example before presenting our approach in detai
parameters. We further present an formalism identifying the  Section Il discusses related work. Section IV introduces

most significant properties based on aggregated service irac- ; fatpibg
tion data. We ultimately provide a ranking algorithm exploiting an entropy model to measure service property distribution

these dynamic interaction characteristics. Experimentalevalua- Within a service-oriented system. We subsequently provide
tion demonstrates scalability and adaptiveness of our apmach. an algorithm in Section V for evaluating the impact of spe-
cific property values on the service interaction structiitee
ranking algorithm in Section VI utilizes the impact maguiéu

to recommend suitable neighbor services. The evaluation of
Internet-scale service-oriented systems contain thalssagur approach in Section VII relies on simulation of a service

of services distributed across multiple organizationsesen network. Finally, conclusions and future work completesthi
services collaborate to achieve a common goal withoutmglyipaper.

on centralized control. Such systems are subject to dynamic
changes but have become too complex to be managed by II. TowaRDS SELF-ADAPTATION

human administrators [1]. Services need to become self- ) . . ) .
adaptive [2] to maintain the system’s functionality. Two broad design principles aim for self-adaptive behavior

One adaptation technique is dynamically selecting the b&&{{onomic systems implementing the MAPE-K cycle (Moni-
service to forward a request to. Due to scale, each serviQ Analyze, Plan, Execute, Knowledge) [2] require a globa
maintains connections only to a neighboring subset of €W ©Of the system to enforce optimal adaptation actions [7]

services. We refer to the complete set of services and th§ﬁ’Cia"y and biology-inspired systems exploit emerging-ph

connections as a service network. In such an environme@mena [8]. The collective behavior of system elementsigiel

no service has a complete picture of the overall network, ofiPal desirable goals purely based on local information.

fundamental problem is identifying the most significantglb ~ ©Ur approach combines these two design principles. We
selection parameters given local information only. apply local service properties and service interactiora dat

Autonomic computing [3] in general—and several servic&@Ptured by distributed logging [9], monitoring [10], omse
ing [11] mechanisms. Analysis and planning (of the MAPE-

oriented computing approaches [4], [5], [6] in particular— :
address self-adaptive behavior. These exhibit, howeva, t'< Ycl€) apply global—but aggregated—knowledge while the
fundamental shortcomings: (i) they require complete, globUltimate execution steps (i.e., service ranking) are &igg by
information and (i) they apply a stable set of adaptation p{'dividual services. This paper focuses primarily on the fo
rameters. This paper specifically addresses these twotaspdBalism for analyzing and planning adaptive service seecti
Our main contribution is a model and algorithm to enabl nfortunately, we.ce_mnot discuss detailed engineeringasp
self-adaptation in service-oriented systems. Specificalle ue to page restrictions.
determine the most relevant services to forward an invonati
request to. To this end, we identify and analyze potenti’g‘l
service properties with the most significarffeet on service  Assume a data service provider participating in a global
interactions. We focus on observable, public service pt@se service network. An example research center becomes a
(e.g., organization, location, type, capabilities) thacdme customer in the early phases of a data-intensive project. At
selection parameters when exhibiting a measuraiecteon the beginning, the need for extensive storage space is low,
service interactions (i.e., acceptegjected invocations). We retrieval requests origin at a single location, and updates

|. INTRODUCTION

Motivating Scenario



occur frequently. Thus requests will mostly happen witlea t location yields no interaction impact. Similarly, the Seev

provider’s own service network, locally concentrated. identifier property yields no impact neither, as every savi
The service interaction characteristics change once datdibits a distinct ID. Thus, neither location nor service

intensive research results are made available for a broammtifier become candidates.

audience. Requests cross provider boundaries, accessato daAny changes in service properties (including fleaving

occurs from multiple locations, while updates decrease.  services) trigger recalculation of candidate proper#éeslong
Suppose a new storage service is about to join the netwoak. requests traverse only services of one provi@egani-

It does not know the clients it will serve. It is also unawafe @ation will not become a candidate. Once the customer in

the particular service interaction characteristics whenviag our example enables access to data for 3rd parties, request:

these clients. The new service, however, needs to learnfiefm external services will occur. As multiple organizatio

the most significant properties to optimally select amotiyst values emerge, the organization property becomes a paitenti

existing services for storing and querying data in the serviselection parameter.

network. For the remainder of this paper, we discuss ourThe subsequent detailed interaction analysis (2) corsider

approach and findings in the scope of one client for sake @fly the properties with highest potential impact (e.g+-ve

clarity. sioning capability). The analysis focus will shift to othgrop-
B. Approach erties when their potential impact measurement signifigant
changes.

For a freshly added service, the significant services are thgnaraction analysis determines whether services tend-to |
ones most likely to accept forwarded requests. To this e®d, Y act with services exhibiting the same offelient properties
need to identify the properties that determine whether agsiy 3). This process runs regularly to maintain up-to-dateaatp

is accepted or not. Our approach, thus, focuses on pullieasyrements. In the early stages of our scenario, services
service information and observable service interactibmghe | iinout versioning capability will forward requests to @ees

early stages of our scenario, services with versioninghidpa with versioning capability. These in turn, will forward gnl
are suitable receivers. In later stages, services at reseot&Ee  otveen their kind.

providers (i.e., dierent organizations) or flierent locations Impact magnitude influences the final ranking order of

provide most benefit by distributing load. suitable services (4). The versioning capability will eibi
highest impact on the ranking result, when forwarding oscur

Serviceld | 81 S2 - | Sn only from non-versioning to versioning services. Laterlie t
PropP1 |P11 |P11 | .. | P11 scenario, we replace the ranking criteria as capabilittenine
Prop P2 | P21 | P22 | .. |P22 less significant, while spatial and organizational prdpert
emerge.
The motivating scenario involves only a sample set of
Prop Pk |Pk-3 |Pk-2 |.. |Pk-3 |PropP1:w=0.0| properties. We provide a generic formalism to determine
Prop P2: w=0.9 impact potential and actual impact magnitude for any type
Prop P2-1 Prop P2-2 of properties. We briefly review related work before promigli
......... Prop Pk: w=0.1 the underlying mathematical model and algorithms.
',"' @‘:. lll. ReLaTED WORK
: Most frameworks and algorithms rely on a-priori definition
VN 88T e g of relevant adaptation parameters. Related work in the doma
of autonomic computing [3] mostly requires either complete
Rank Sn: global information or sfiices with limited local context.
S1 Quitadamo et al. [4] demonstrate a knowledge-network
* s3 driven approach to service selection and aggregation. An-
dreolini et al. [12] exploit load trends for autonomic reque
;| P2-1:t=01 S2 forwarding between geographically distributed systems.
O Egg I:_g-i S4 ... Maximilien and Singh [13] combine QoS parameters and
Prop P2-3 - : - trust based on service interactions to find the best service.
Focusing purely on self-adjusting trust, they assume fixed
Fig. 1. Property checking, evaluation, and ranking individual preferences that do not change undeffedint

conditions. This shortcoming is partially addressed byt&ot
Figure 1 visualizes the approach comprising the followingnd Hall [14] who focus on event-driven adaptive service
steps: based on the distribution of property values acrassection using, however, only local context information.
services, we derive candidate properties (1). These catedtid Colman [15] proposes a hybrid approach to self-
yield high potential impact on service interaction. Forrapde, organization services through hierarchical structurificao-
when all observed services reside within a single data centenomic managers and services. We expect services to self-



. - . . Symbol Meaning
organize their mteractlo_ns, whereas Colman reqwresmltmg 5 the set of Services € S T 3 SeTvice TewWorkV
nomic manager to monitor and control all composed servicesy the set of public properties in the service netwavk
thereby severely limiting the size of manageable servieca-co| P a particular public property? € # comprising any
ositions number of property valuep; — p, € P

P o . . F a function mapping each servisgo one property value|

Jennings et al. [16] discuss an architecture for autonomic p for each public property
management of communication networks. Thev sugagest ag?PE(S.P) the property distribution entropy for particular property

g y sugg P and 6 2a8

. . ana service s
P'y!r?g the MAPE'K cycle to a_ Complete set Of. entlt'e§' thus PDEjowerjupper | @ function describing the minimum (maximum) PDE
limiting the architecture’s applicability to domains ekting values for a given number of property valups P
a central set of goals. Utilupperfower | @ function describing the minimum (maximum) utility

. . . . _ along the lower (upper) PDE limits.

_Goal_’or'emed approaches to_ dynamlc.serwce Sek_aCt'on E set of interaction edges in the directed service interac-
quire either a complete global view on all involved entifigk tion graphg
[6] or utilize local context onIy [17]_ clusterp(i) set of services exhibiting the same property vglue P

.. . trendp (i) interaction focus (internal or external) of a cluster

Emergenc_e—based, sglf—o_rganlzmg gpproaches in the domai associated tqy € P
of autonomic communications [18] inherently lack a clearimpe(i) interaction impact of a cluster associatedptos P
distinction between regular component functionality and a| imP overall interaction impact of property .

d iteration count within the zero model analysis

tonomic adaptation.
In Self-Configuring Socio-Technical Systems [19], Bryland TABLE | ‘
. .. . . . . YMBOLS APPLIED IN THE ENTROPY MODEL (UPPER SECTION) AND EVALUATION
Giorgini describe a multi-agent system reacting to dynamic ALGORITHM (LOWER SECTION).
reconfiguration needs. $ee et al. [20] present an algorithm
that results in self-organizing behavior of services. Memb
ship properties enable the algorithm to achieve the ddsirab
behavior using again only local context information. Hoeev  In our model, a service network/(S,P) is defined as a
the type and impact of context information is a-priori define set of servicesS exhibiting a set of public propertieg®. Each
Dynamically identifying the most relevant parameterpropertyP € # consist of a set of non-overlapping property
for self-adaptation includes research by Zhang anluesp;...pn. In addition, for each propertly there exists a
Figueiredo [21]. Their bayesian network based autonomigapping# (S — ) such that each servicee S is assigned
feature selection, however, focuses exclusively on servito exactly one value instangee P, ultimately establishing the
internal measurements and thus neglects any form perty matrix (Figure 1 input to Step 1). Whether promesrti
interaction data. Marinescu et al. [22] measure the impoga are numerical values, strings, or enumerations is irrefeaa
of properties on system self-organization, but focus on titlee function# establishes a unambiguous mapping. For each

impact of gene diversity. propertyP, we define the Property Distribution Entropy (PDE)
as follows:
IV. ProperTYy ENTROPY MODEL N 1
Ipil -
In large-scale networks, service interaction analysis is a PDES,P)=1- Z ( 2' ) * (2) (1)
computationally intensive task. Knowing which aspectsl wil i=1

yield the most significant findings maximizes thfi@ency where|p;| is the number of services mapped to property value

of the analysis process. The primary purpose of a suitaljee P andz = |S] is the total number of services iD.

metric is thus to identify those properties, that potelytiaive  For this entropy metric, there exists a lower and a upper

a measurable impact on interactions. Such a metric must waitkit given q = |P| and z = |S|. Figure 2 (a) visualizes the

on properties consisting of any number of values, and enalp@er and upper entropy limits far= 15 andq = [1, 15]. The

comparison of properties thatftér in their amount of values. Jower limit describes the most asymmetric distribution ¢pf

Example service properties include the organization dépip property values across all services. For any[1,...,c] one

the service, the service location, storage capacity, andet |arge group ofz— (q- 1) services will share the same property

routing capability (e.g., none, random neighbor, rouninp  value andy—1 services will exhibit individual property values.
The following model and entropy metric calculates th&he lower entropy limit PDRye is defined as:

distribution of properties across services. Table | gives a

summarized explanation of the symbols applied in the modgdpg,,«(2) = 1 > withl<q<z

and impact algorithms. r-z @)

The metric output for each property is in the intervallD 6 ypper entropy limit describes the most symmetric distri
A metric valuev towards O describes a trend of Servicegtjon of given property values across all services thématty
sharing the same property values, while a metric value 5ggihje. There exist groups ofZ services having a distinct

wards 1 denotes services exhibiting individual propertyes. property value. The upper entropy limit PR is defined
Extreme cases include all services having the same propelty

value ¢ = 0) and each service having a distinct property value
v=1). PDEuper(d) = 1

¢ -(2z+1)q+Z7+z

(z-9)
qz-1)

withl<qg<z (3)
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Fig. 2. Entropy limits (a), utility boundaries (b), and oakrutility function (c) for c = 15

The algorithm presented in the next section determinegif thteadily as the number of distinct property values rise.
impact results in interactions occurring predominantlnsen
services exhibiting the same property values, betweencssrv utilupper (2) =
of different property values, or between services without
any distinct interaction bias. First, we need to evaluates arjgure 2 (b) visualizes the lower and upper entropy utility
property’s likelihood of having an impact on interactions.  fynction forz = 15 andq = [1, 15]. We aggregate upper and
To this end, we introduce upper and lower entropy utilitower utility functions in the overall utility function Ut
functions. These utility functions describe the ratio aviees defined as follows:
that have a choice to communicate either with services of

N

o]

¥0<z2<Qq<z (5)

N

(pde — PDEjower)

the same property value or with services exhibitinffedtent Utiliota (z, pde) = BDE PDE # Utillypper
property values. Only these services generate interacthuat upper lower
exhibit potential property impact [23], [24]. N (PDEupper — pde) Uilows  (6)

The lower entropy utility functiorutiliower corresponds to PDEupper — PDEower

the lower entropy limit PDEjower). It reflects the fact, that whereutil pper returns the utility value for the upper entropy
q-1 services can only communicate with services exhibitingnit and util,we returns the utility value for the lower entropy
a different property value, and thus cannot be included ffi,it The total value combines the two utility values propo
the impact calculation. Consequently, as individual prope (o, to the distance of the entropy value and the respectiv

values become more common (i.e., entropy vake 1), nner and lower boundarie®DE pper, PDEjower). Figure 2
the likelihood reaches 0. In contrast, as services inaig8si (¢) yisualizes the overall utility function which provides

share the same property value (i.e., entropy vaki®) any |ielihood measurement in the interval,[.
interactions across properties must be considered i

the likelihood similarly decreases towards 0.
V. PropPERTY IMPACT EVALUATION ALGORITHM

q

. 1 . . . -
Utiloue (2) = 0.5 — | — 0.5 — = 1| l<zl<q<z (4) The PDE model provides the means to identify promising

impact properties. In the subsequent step we need to egaluat
whether these candidate properties have indeed an impact or
The upper entropy utility functiomtilypper COrresponds to the service interactions. We define a positive impact of a prigper
upper entropy limit PDEypper). It peaks where all entities arevalue on a group of services when these services tend to
equally distributed across two property values and deeeeasommunicate with each other (i.e., internal communication



rather than interacting with services exhibitingfeient prop-

Viable service invocation collection techniques include

erty values. A negative impact implies a tendency towardisgging[9], monitoring [10], and sensing [11]. The unionadif

external communication.

Algorithm 1: Impact Evaluation AlgorithmA(G(S, E), P)

function Carcurarelmpact(G(S, E), P)
Dev « call AnalyzeZeroModel (P, G)
for all Clustersc € P do
nRatio « |c|/|V|
cRatio « call CalcLinkRatio(c, G)
dif f = |nRatio — cRatio|
if diffx«util(P)> 2= Dev[c] then
if cRatio > nRatio then
/* trend for internal communication/*
trend = dif f /(1 — nRatio)
else
/* trend for external communicatiory *
trend = dif f /nRatio -1
end if
setTrend(c, trend)
else
setTrend(c, 0)
end if
end for
end function

function AnaLyzeZeroMobeL(p, G)
Dev[] < 0
for i =1tod do

R « randomizeAcrossPartitions(G, cluster Sizes(P))

for all Clusterr € R do
nRatio = |r|/|V]
cRatio « call CalcLinkRatio(r, G)
dif f = |nRatio — cRatio|
if cRatio > nRatio then
dev =dif f/(1 - nRatio)

else
dev =dif f/nRatio
end if
Dev[r] « Dev[r] + dev
end for
end for

for i=11t0|C| do
Dev[i] < Dev[i]/z
end for
return Dev
end function

function CarLcLinkRatio(c, G)
intra = countLinksWithinCluster(c, G)
total = countLinksOfCluster(c, G)
edgeRatio = intra/total
return edgeRatio

end function

service invocations create a directed interaction gGQhE).
The graph’s edgek denote service invocations and the nodes
V represent all service§ € N participating in the service
network. For each propertly, we refer to the set of services
exhibiting the same property valyeas a networlcluster.

For the impact evaluation process (Algorithm 1), we select
properties with highestitility. FOr every cluster, theRatio
calculates the ratio of property internal to total commatign
links. The natural link ratimRatio of a cluster in an unbiased
network is|cluster| / |S|. To include the characteristics of
the underlying interaction network, we create a zero model
by distributing all services randomly across clusters & th
same size. Multiple rounds of randomization yield a natural
deviation of each cluster ratio from the natural ratio. To
enable comparison of clusters independent of their natural
ratio (nRatio) any deviation fromnRatio is mapped to the
interval [-1, +1], where atrendp(c) of —1 indicates complete
external orientation, andl complete internal orientation. This
orientation is defined as:

cRatioc_nRatio;  jf cRatio, > NRatiog,

trendp(c) = { nRatioe . ) (7)
—%{i‘*"k if cRatio; < nRatiog

and the impact of cluster for PropertyP is defined as:

Mpe() = {trendp(c) 11 Itrendp(C)] = Utilta(P) > 2 deve
0 otherwise
(8)
where utiliiq (P) is the utility of propertyP and dev; is the
zero model deviation for the cluster Taking twice dev
and reducing further byitilioiz (P) ensures that also for low

likelihood values the deviation is Siciently distinct.

A property p needs not necessarily consist of uniform
cluster trends. Internally oriented, externally orientead
unbiased clusters can coexist. Aggregating all trendsqsrop
tionally to their corresponding cluster size yields the ralle
property importance value:

impe = ity limpe(i)] * [clusterp(i)| ©)
S|

We continue to consider only properties with the highest
impactimpp for further interaction analysis as outlined in the
following section.

VI. ServICE RANKING ALGORITHM

The calculation and evaluation of property utility, impact
and impact trend is node independent. When a new ser-
vice joins the network, the ranking algorithm applies these
global metrics to generate a recommendation specific to the
newcomer. For the properties with highest impact, we select
the cluster identified by the newcomer’s properties. Foheac
cluster, we derive its interactiorfanity towards other clusters.
The diinity function dfinity(G, ¢y, ¢;) describes the likelihood
of a new request irc; being forwarded toc,. The special



casec; = C; covers internal request delegation. The function Recommending services from clusters that have received

is defined as: many requests in previous rounds achieves desirable prefer
tial attachment characteristics. Independent from theb@arm

(10) of services, the recommendation algorithm ensures itdgpers
ing applicability as the service network grows.

[links(cl — c2)|

affinity(G, cl, c2) = links(cL > G)

wherelinks(cl — c2) selects all links starting in cluster A, Discussion of Computational Complexity

and ending_ in clqstecz, respect.ively ending anyvyhe_re in the e computational complexity of our approach depends on
network G including cy. In a directed graph, flinity is N0t {6} 6ing factors: the total number of serviceghe number of
reciprocal, thus finity(G, c1,c2) # affinity(G,c2,c1)vcl # e properties?| and the number of their respective values
c2. g, the number of service interactioffi§|, and the number of

Our ranking algorithm builds on top of any existingy aph randomizationd. Table Il lists the worst case runtime
selection mechanism that fulfils following three conditson complexity for the various processing steps.

(i) returned candidate services are potential commuminati

partners, (ii) services are ranked by their domain specific Step Complexity
capability, (iii) services map to ranking scores that reflec Service to Property Mapping Oz q)
the relative match amongst all selected services. A mere ﬁ?;‘;‘é’t’ioialg”gﬂ‘;?er Mapping (S)(I(gl)l**lg)l)
list representing the service’s rank is iffiscient. In case of Cluster Analysis o(P| + )
failing these conditions, our ranking algorithm considals Zero Model Analysis O([E| = 1P| = d)
candidates as equally suitable. TABLE II

RunTiME COMPLEXITY

Algorithm 2: Update Ranking Resultgi(new, R, PP)

function RankinGResurrUppare(new, R, PP) . . . s
/* Modifies the ranking results based on property ims From this overview, the€luster Analysis appears to inhibit

- scalability the most. However, by restrict analysis to @mies
por:g?(;ﬁl aggﬁpé%r;r c R do with highest entropy valuePDE, the maximum value of

. . . observed property valuegwill grow slower than the number
gf?fvaw—c(;nllects all éfects on candidate ranl of total services.

for all Property P € PP do VII. E VALUATION AND EXPERIMENTS

Crewcomer < QetCluster (P, new) This section demonstrates th&eetiveness of our approach
Ceandidate < getCluster (P r) based on the motivating scenario. This includes a step Ipy ste
affinity = CalCAmn_'ty(CPaNCOme"Cca”didaie) walk-through of metric computation and analysis of muttipl
affw = affw + affinity = impact(P) properties. We simulate a service network in the secondgbart

end for this section. The simulation compares the benefit of apglyin

updateRank(r, getRank(r)  af fw) our service ranking algorithm to a trial-and-error setacti
en(:(fRo)r in terms of accepted and rejected invocations. Throughout
sor

the experiment, we measure only the benefit experienced
by a newcomer service. In real-world settings, however, any

services is free to utilize the ranking algorithm.
The basic idea is to apply clusteffiaity values to update

the candidate’s rank. Algorithm 2 demonstrates the precife SCenario
steps. For each candidate and all properties of significanWe observe a limited nhumber of services in the network for
impact, as identified in the previous section, we select tisake of clarity. The recommendation process observes three
newcomer's clustercrencomer and the candidate’s clusterpublic properties: (i) Location (L1...L9), (ii) OrganiZzah
Ceandidate- WWe subsequently retrieve theffinity value of (O1...04), and (iii) Capability (C1...C3). Table V (upper
Cnewcomer tOWards Ceangigate- Candidates in clusters with low part) outlines the mapping of 14 existing services and one
affinity are penalized more than candidates in clusters néwcomer (S15) to the three properties. This configuration
frequent request forwarding. fBnity values do not modify yields the property distribution entropy metrie[YE), corre-
ranks to their full extend but only proportional to thesponding entropy limitsRDE,pper, PDEjower), and respective
respective property impadmpp(c). For each candidate theutility in Table I11.
sum of all weighted flinity values determines the extend to Analyzing the weighted interaction graph in Table V (lower
which the ranking result is reduced or increased. Findllg, tpart), we detect the impact values depicted in Table IV. For
updated candidate list is sorted again. The newcomer seniocation and Organization, we derive impact only for L5,
can then select among the top ranked existing services fespectively O3, in both cases a strong external trend. For
successful request forwarding. Capability, the interaction graph results in a strong external
trend for all three property values (C1, C2, and C3). Hence,

end function



Property Total
Location L1 L2 L3 L4 [ L5 | L6 | L7 | L8 | L9
Property | PDE | PDEjower PDEypper | Utiltotal Impact 0 0 0 0 -1 0 0 0 0 0.07
Loc 0.945 0.835 0.957 0.411 Organization| O1 02 03 04
Org 0.802 0.396 0.808 0.826 Impact 0 0 -095| O 0.20
Cap 0.626 0.275 0.718 0.772 Capability C1l Cc2 C3
TABLE Il Impact 0.86 1 0.92 0.92
PDE,LiMITS, AND UTILITY VALUES FOR LOCATION, ORGANIZATION, TABLE IV
AND CAPABILITY PROPERTIES. ProPERTY IMPACT EvaLUATION RESULTS

for service S15 with properties (L9, O3, C1) and randomlyeighborhood to forward the request to. The receiving servi
chosen neighboring services (S2, S4, S7, S9, S11, S12, S1H@n chooses to accept or deny the request. In the former case
we arrive at the ranking results printed in the rightmostiomh  the request is considered successfully completed. In ther la
of Table V. case, the sending service receives 1 penalty point and has to
Service S2 is ranked highest. As prope@gpability has find another service to forward the request to.
the strongest impact on the interaction network, we put mostAlthough services apply the acceptance matrix for incoming
weight on dinity values amongst property values C1, C2equests, they do not utilize this information for outgoing
and C3. In our scenario, services of type C1 tend to forwardquests. Instead, they engage the proposed rankingthlgori
requests to service of type C2, C2 to C3, and C3 back to Cllhe algorithm then applies the analyzed public propertiek a
The ranking result thus recommends service S15 to forwasdrvice interactions as described in the previous sectitms
requests primarily to S2 as S2 is the only neighbor of SHiminate any fects of domain specific ranking, the simula-
exhibiting property C2. tion assumes all services are equally able to process aseque
We calculate the benefit of our recommendation algorithm
by comparing the penalty a newcomer service receives when
Simulation-based evaluation allows for analyzing our regontacting neighbors by trial-and-error and when comtagcti
ommendation algorithm under changing conditions with rghe recommended neighbors.
spect to property count, property impact, service netwam,s | all experiment iterations, we assign random requests to
and impact fluctuations. We focus only on the behaviorgkryices each round to simulate service load fluctuations. T
characteristics of our algorithm and do not consider theSCOReep the overall network load constant, however, the aeerag

of network monitoring. Chen et al. [25] follow an algebranumber of assigned requests per service is fixed=ag0.
based approach tdfeient network monitoring.

The simulation environment consists [#| = n services. C. Measuring Scalability

Each service exhibit’] = m property values, corresponding  First, we demonstrate the scalability of our approach. We
to mdistinct properties. Services have the capability to fodva;,crease the number of services, (service neighborhoodh),

a received request to another service from their servioghrei g, property valuesp). In each round, we measure for each
borhoodh or reject it. For each property, an acceptance matrl%\,\”y added service the penalty received in the process of

M simulates the impact of current requirements on the serviggccessfully forwarding a single request to a random neighb
interaction structure. The matrix provides the likelihoofl yegpectively a recommended neighbor.

any service with property valug; to accept a request from a  The injtial service network consists of = 50 services,
service with property valu@;. As the simulation progresses,ggch havingh = 24 random neighbors. Four properties (P1
we adapt the importance weight of the various property ma- py4y exhibitingp| = 7,5, 4, and 4 values respectively exert
trixes to reproduce the dynamic requirement changes. Wblejmact via their acceptance matrixes. As we add a new service
provides a snapshot of an acceptance matrix for prope{f connect it with random 26 log(n)? existing services.
Organization comprising four property values. In this exampleaqgitionally, we link randomog(n) existing services with the
request forwarding occurs in a circle. newcomer. For the four properties (P1 ...P4), the simuiatio
introduces new property values at a growth rateéagf{n).

B. Smulation Setup

from/to 01| 02| 03| O4 . . !
oilro T T 1 oo Figure 3 prints the average benefit for every 50 consec-
o2l ol o] 1|0 utive benefit measurements over multiple experiment runs.
8‘31 2 8 8 (1) On average, the recommendation-based approach outpsrform
the trial-and-error approach across scales. At the endef th
TABLE VI

scalability experiment, the final service network comwise
ExAMPLE ACCEPTANCE MATRIX M FOR FOUR ORGANIZATION PROPERTY VALUES . . .

O1 . .. O4 EXHIBITING MAXIMAL CONSTRAINTS. 10050 services, each linked to 105 neighbors on averagé. Eac
of the four properties exhibit nine more values, bringing th
number of choices t{p| = 16, 15, 14, and 13 respectively. The

In each simulation round, services receiverandomly recommendation algorithm yields similar good results fos t
assigned requests. Each service then selects a membettdroradnfiguration as for the initial service network.



Serviceld S1 | S2| S3| S4| S5 | S6| S7 | S8 | S9 | S10| S11 | S12 | S13| S14 | Si15
Location L1 L2 L1 L2 L3 L4 | L5 L6 L7 L8 L9 L4 L8 L9 L9
Organization| O1 | 02 | O3 | 04 | O1 | 02| O3 | O4 | O1 | O2 03 04 o1 02 03
Capability ci|jczjc3|c1|cz|yc3|cr|cz2|c3)| c3 C3 C3 C3 C3 C1l
S1 | S2| S3| S4| S5 S6| S7| S8 | S9 | S10| S11 | S12 | S13 | S14 | Rank
S1 0 0 0 0 35 0 0 0 0 0 0 0 0 0 -
S2 0 0 0 0 0 0 0 0 0 0 0 0 0 43 91.50
S3 33 0 0 6 0 0 0 0 0 0 0 1 0 0 -
S4 0 33 0 0 0 0 0 5 0 0 0 0 0 0 17.77
S5 0 0 0 0 0 0 0 0 0 26 0 0 8 0 -
S6 2 0 0 0 0 0 27 0 0 0 2 0 0 0 -
S7 0 0 0 3 16 1 0 0 1 3 0 0 0 0 3.05
S8 0 0 0 0 0 0 0 0 0 31 1 0 0 0 -
S9 3 0 0 0 0 0 29 0 0 0 0 0 0 0 15.37
S10 0 3 0 28 0 0 0 0 0 0 2 1 2 0 -
S11 0 0 1 32 2 0 0 0 0 0 0 1 0 0 4.95
S12 0 0 0 37 0 0 0 0 0 0 0 0 0 0 13.74
S13 47 0 0 0 0 0 0 0 0 0 0 0 0 0 -
S14 0 0 1 29 2 0 0 0 0 2 0 1 0 0 5.57
TABLE V
SERVICE NETWORK . WEIGHTED DIRECTED GRAPH INCLUDING RANKING RESULTS FOR S15.
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Fig. 3. Average benefit for service recommendation comptoedal-and-error selection. Numbers display aggregatd 50 new services within a service
network growing from 50 to 10050 services.

D. Measuring Adaptiveness
We analyze 30 experiment iterations, each comprising 100

We have shown scalability for fixed impact of the fouimpact changes. Figure 4 prints the benefit (and standard
properties (P1 ...P4). Here, we demonstrate the adapyabitieviation) received for applying recommended selectian fo
of our approach. Along these lines, we dynamically changach of the 10 rounds after the property impact change. We
the impact weights of the respective acceptance matrixgisserve lower—but still positive—benefit measurements for
(Mz...My) every 10 rounds while measuring the qualityhe first two rounds after a change. As the algorithm self-
of the recommendation result every round. The numbagjusts, average benefit increases to 2.
of servicesn = 50, their neighborhood siza = 24, and ) )
the property valuespg,) remain constant. As we keep theE- Measuring Constraint Impact
number of services fixed, we select in each round a randoniThe realizable benefit heavily depends on the constraints
existing service to measure the penalties for recommendad the service network. When lack of constraints result in
and trial-and-error neighbor selection. high acceptance rates, any random neighbor will most likely



+  Avg Benefit of 50 Measurements
5th degree best fit
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=
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Fig. 4. Average benefit for each round following a propertpaut change. rig 5. Average benefit for service recommendation comptedal-and-
error approach for increasing constraints. Numbers dispiregated benefit
of 50 consecutive measurements.

be a suitable selection. The ranking algorithm will provide

considerable benefit once constraints emerge and begin t?)espite these challenges, our model and algorithms perform

lncl:rne;s;ng]li): dreesipr:g:irsneerx;C\e/vlen;et:rltcuvﬁtnhs%our properties (eacﬂgnificantly better than trial-and-error service sel@ttiwhen
. ' L . mparing aver I nalty m remen r
having 10 property values) allowing interactions betweey aCO paring average, absolute penalty measurements (Fjure

clusters (i.e., the corresponding acceptance matrixesiiag the ranking algorithm results in 2.5 times lower penalties
. o P 9 P .~ during the scalability experiment, and 2.7 times lower &=
with 1s). Every 10 rounds, we randomly select one particulgr

roperty and increase the constraints. As we continue uring the adaptivity experiment, respectively. The tlexper-
property . i X X .iment displays 2.1 times lower penalties averaged over tiaé fi
replace random 1s with Os in the acceptance matrix, the trig

and-error aporoach vields increasing penalties. We. coatin 00 rounds. For both scalability and adaptivity experitaen
P Y gp ' our algorithm requires on average slightly more than a singl

increasing the constraints until every acceptance matfix forwarding retry (i.e., one rejected request). The triad-@rror
contains a single 1 on each row (e.g., Table VI). Thus, fqr ’

i ; approach, in contrast, results in approximately threde®tr
every propertyP, a service of any particular property value - r PP y

: S . e(he constraint measurement displays higher failure r&es.
P € P only accepts requests from services exhibiting a SINGE& commendation algorithm requires less tharetries, while
other property valugy € P (including x = y). Throughout the '

! . . L érial-and-error selection causes 5 rejections.
experiment, property impact and service count remain fixed. . : e
Fi 5 s th e 10 At this stage, we cannot predict the algorithm’s perfornganc
_ rlgure > presents he average _penatﬁ“ ence over in real world implementations. However, our simulationslgi
iterations ofn = 50 services having on averade = 24

. . o very promising results and demonstrate both scalability an
neighbors. Benefits start rising around round 1750. Arou %y P g o

: ) aptiveness of our approach.
3800, this growth levelsfd as the constraints can no longer P PP
be intensified. VIII. OurLook AND CONCLUSIONS

Self-Organization of services requires knowledge of tge si
nificant properties determining service interactions. Vegeh

The simulation reflects the key challenges outlined in th@resented a model identifying potential properties. Oyrdot
introduction to reproduce the constraints found in reallgvorevaluation algorithm further reduces this set by detenngini
service networks. First, services provide only public imia- properties with maximum impact on service interactionst Ou
tion on their various static properties. Second, the degisiservice recommendation algorithm subsequently rankalseit
process for selecting a suitable receiving service religelp request receivers based on the aggregated interactioacchar
on dynamic information. Third, services accept incominggristics. Experimental evaluation has demonstrated beekh
requests based only on internal, non-observable infoamatiability and adaptiveness of our approach. Although focused
(i.e., defined by the acceptance matrix). Finally, no servidata services, our findings apply also to general compasitio
obtains a complete view on service interactions. comprising services and human entities.

F. Experiment Discussion
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Fig. 6. Average penalty measurements andstandard deviation for [14]

scalability, adaptivity, and constraints experimentsnparing recommended
versus trial-and-error selection.

[15]

We will continue to aim for enabling services with increas-
ing degree of self-adaptiveness. To this end, we plan e')rtgnd[lﬁ]
the set of algorithms utilizing the property distributiomtepy.

We will also investigate optimal strategies to combine @and

and ranked selection under varying constraints. [17]

ACKNOWLEDGMENTS

This work has been partially supported by the EU STRE[I1>8]
project Commius (FP7-213876).

REFERENCES

[1] M. C. Huebscher and J. A. Mccann, “A survey of autonomi(,llg]
computing—degrees, models, and applicatiot’’sCM Comput. Surv., 20
vol. 40, no. 3, pp. 1-28, August 2008. [Online]. Available:[ |
httpy/dx.doi.org10.11431380584.1380585

J. O. Kephart and D. M. Chess, “The vision of autonomic pating,”
Computer, vol. 36, no. 1, pp. 41-50, January 2003. [Online]. Avaiabl
httpy/dx.doi.org10.1109MC.2003.1160055

S. Hariri, B. Khargharia, H. Chen, J. Yang, Y. Zhang, M.ré&&har,
and H. Liu, “The autonomic computing paradignGfuster Computing,
vol. 9, no. 1, pp. 5-17, 2006.

R. Quitadamo, F. Zambonelli, and G. Cabri, “The servioesystem:
Dynamic self-aggregation of pervasive communication ises/’ in
Software Engineering for Pervasive Computing Applications, Systems,
and Environments, 2007. SEPCASE ’'07. First International \Workshop
on, May 2007, pp. 1-1.

F. Casati, M. Castellanos, U. Dayal, and M.-C. Shan, tRlistic,
context-sensitive, and goal-oriented service selettiion,|CSOC '04:
Proceedings of the 2nd international conference on Service oriented
computing. New York, NY, USA: ACM, 2004, pp. 316-321.

D. Greenwood and G. Rimassa, “Autonomic goal-orientaditiess pro-
cess management,” ICAS ' 07: Proceedings of the Third International
Conference on Autonomic and Autonomous Systems.  Washington, DC,
USA: IEEE Computer Society, 2007, p. 43.

E. Di Nitto, C. Ghezzi, A. Metzger, M. Papazoglou, and kohP “A
journey to highly dynamic, self-adaptive service-baseglieations,”
Automated Software Engg., vol. 15, no. 3-4, pp. 313-341, 2008.

(2]

3] [21]

[ 2]

(23]

(6]
[25]

(7]

0. Babaoglu, G. Canright, A. Deutsch, G. A. D. Caro, F. Batle, L. M.
Gambardella, N. Ganguly, M. Jelasity, R. Montemanni, A. kesor,
and T. Urnes, “Design patterns from biology for distributemnputing,”
ACM Trans. Auton. Adapt. Syst., vol. 1, no. 1, pp. 26-66, 2006.

C. Dorn, H.-L. Truong, and S. Dustdar, “Measuring and lgriag
emerging properties for autonomic collaboration servidapgation,” in
ATC '08: Proceedings of the 5th international conference on Autonomic
and Trusted Computing. Berlin, Heidelberg: Springer-Verlag, 2008, pp.
162-176.

O. Moser, F. Rosenberg, and S. Dustdar, “Non-intrusagnitoring and
service adaptation for ws-bpel,” MAMW *08: Proceeding of the 17th
international conference on World Wide Web. New York, NY, USA:
ACM, 2008, pp. 815-824.

I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. CaiyifA survey
on sensor networksCommunications Magazine, |IEEE, vol. 40, no. 8,
pp. 102-114, Aug 2002.

M. Andreolini, S. Casolari, and M. Colajanni, “Autondenrequest
management algorithms for geographically distributecerimet-based
systems,” inSelf-Adaptive and Sdlf-Organizing Systems, 2008. SASO
’08. Second |EEE International Conference on, Oct. 2008, pp. 171-180.
E. M. Maximilien and M. P. Singh, “Toward autonomic webrsgices
trust and selection,” ihCSOC ' 04: Proceedings of the 2nd international
conference on Service oriented computing. New York, NY, USA: ACM,
2004, pp. 212-221.

A. Bottaro and R. Hall,Dynamic Contextual Service Ranking, ser.
Lecture Notes in Computer Science.  Springer, 2007, ch.waoft
Composition, pp. 129-143.

A. Colman, “Exogeneous management in autonomic seremmposi-
tions,” in ICAS’07: Proceedings of the Third International Conference
on Autonomic and Autonomous Systems.  Washington, DC, USA: IEEE
Computer Society, 2007, p. 25.

B. Jennings, S. van der Meer, S. Balasubramaniam, Dvid&ut
M. Foghlu, W. Donnelly, and J. Strassner, “Towards autoomanage-
ment of communications networksZommunications Magazine, |1EEE,
vol. 45, no. 10, pp. 112-121, October 2007.

T. Yu and K.-J. Lin, “Adaptive algorithms for finding r&gzement
services in autonomic distributed business processesfutonomous
Decentralized Systems, 2005. I1SADS 2005. Proceedings, April 2005,
pp. 427-434.

S. Dobson, S. Denazis, A. Fernandez, D. Gaiti, E. @mde F. Massacci,
P. Nixon, F. S#re, N. Schmidt, and F. Zambonelli, “A survey of
autonomic communicationsACM Trans. Auton. Adapt. Syst., vol. 1,
no. 2, pp. 223-259, 2006.

V. Bryl and P. Giorgini, “Self-configuring socio-tecimal systems:
Redesign at runtime ITSSA, vol. 2, no. 1, pp. 31-40, 2006.

F. Sdfre, R. Tateson, J. Halloyy, M. Shackleton, and
J. L. Deneubourg, “Aggregation Dynamics in  Overlay
Networks and Their Implications for Self-Organized Distried
Applications,” The Computer Journal, 2008. [Online]. Available:
httpy/comjnl.oxfordjournals.orggi/contenfabstraghxn017v1

J. Zhang and R. Figueiredo, “Autonomic feature setectior applica-
tion classification,” inAutonomic Computing, 2006. ICAC '06. |EEE
International Conference on, June 2006, pp. 43-52.

D. Marinescu, J. Morrison, C. Yu, C. Norvik, and H. SiegéA
self-organization model for complex computing and comroaiidn
systems,” inSelf-Adaptive and Sdlf-Organizing Systems, 2008. SASO
'08. Second |EEE International Conference on, Oct. 2008, pp. 149-158.
B. Bollobas,Random Graphs, W. Fulton, A. Katok, F. Kirwan, P. Sarnak,
B. Simon, and B. Totaro, Eds. Cambridge University Pres§120

I. A. Mcculloh, J. Lospinoso, and K. Carley, “Social netrk probability
mechanics,” iTMATH’ 07: Proceedings of the 12th WSEAS Inter national
Conference on Applied Mathematics. Stevens Point, Wisconsin, USA:
World Scientific and Engineering Academy and Society (WSEAS
2007, pp. 319-323.

Y. Chen, D. Bindel, H. H. Song, and R. H. Katz, “Algebraded scalable
overlay network monitoring: algorithms, evaluation, argplecations,”
|IEEE/ACM Trans. Netw., vol. 15, no. 5, pp. 1084-1097, 2007.



