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Abstract—In this paper, we address the problem of self-
adaptation in internet-scale service-oriented systems. Services
need to adapt by select the best neighboring services solelybased
on local, limited information. In such complex systems, theglobal
significance of the various selection parameters dynamically
changes. We introduce a novel metric measuring the distribution
and potential impact of service properties affecting such selection
parameters. We further present an formalism identifying the
most significant properties based on aggregated service interac-
tion data. We ultimately provide a ranking algorithm exploi ting
these dynamic interaction characteristics. Experimentalevalua-
tion demonstrates scalability and adaptiveness of our approach.

I. Introduction

Internet-scale service-oriented systems contain thousands
of services distributed across multiple organizations. These
services collaborate to achieve a common goal without relying
on centralized control. Such systems are subject to dynamic
changes but have become too complex to be managed by
human administrators [1]. Services need to become self-
adaptive [2] to maintain the system’s functionality.

One adaptation technique is dynamically selecting the best
service to forward a request to. Due to scale, each service
maintains connections only to a neighboring subset of all
services. We refer to the complete set of services and their
connections as a service network. In such an environment,
no service has a complete picture of the overall network. One
fundamental problem is identifying the most significant global
selection parameters given local information only.

Autonomic computing [3] in general—and several service-
oriented computing approaches [4], [5], [6] in particular—
address self-adaptive behavior. These exhibit, however, two
fundamental shortcomings: (i) they require complete, global
information and (ii) they apply a stable set of adaptation pa-
rameters. This paper specifically addresses these two aspects.

Our main contribution is a model and algorithm to enable
self-adaptation in service-oriented systems. Specifically, we
determine the most relevant services to forward an invocation
request to. To this end, we identify and analyze potential
service properties with the most significant effect on service
interactions. We focus on observable, public service properties
(e.g., organization, location, type, capabilities) that become
selection parameters when exhibiting a measurable effect on
service interactions (i.e., accepted/rejected invocations). We

define the impact of a property as the extent to which services
of one property value (e.g., location A) successfully forward
requests to services exhibiting a different property value (e.g.,
location B).

We structure this paper as follows: Section II gives a
motivating example before presenting our approach in detail.
Section III discusses related work. Section IV introduces
an entropy model to measure service property distribution
within a service-oriented system. We subsequently provide
an algorithm in Section V for evaluating the impact of spe-
cific property values on the service interaction structure.The
ranking algorithm in Section VI utilizes the impact magnitude
to recommend suitable neighbor services. The evaluation of
our approach in Section VII relies on simulation of a service
network. Finally, conclusions and future work complete this
paper.

II. Towards Self-Adaptation

Two broad design principles aim for self-adaptive behavior.
Autonomic systems implementing the MAPE-K cycle (Moni-
tor, Analyze, Plan, Execute, Knowledge) [2] require a global
view of the system to enforce optimal adaptation actions [7].
Socially and biology-inspired systems exploit emerging phe-
nomena [8]. The collective behavior of system elements yields
global desirable goals purely based on local information.

Our approach combines these two design principles. We
apply local service properties and service interaction data
captured by distributed logging [9], monitoring [10], or sens-
ing [11] mechanisms. Analysis and planning (of the MAPE-
K cycle) apply global—but aggregated—knowledge while the
ultimate execution steps (i.e., service ranking) are triggered by
individual services. This paper focuses primarily on the for-
malism for analyzing and planning adaptive service selection.
Unfortunately, we cannot discuss detailed engineering aspects
due to page restrictions.

A. Motivating Scenario

Assume a data service provider participating in a global
service network. An example research center becomes a
customer in the early phases of a data-intensive project. At
the beginning, the need for extensive storage space is low,
retrieval requests origin at a single location, and updates



occur frequently. Thus requests will mostly happen within the
provider’s own service network, locally concentrated.

The service interaction characteristics change once data
intensive research results are made available for a broader
audience. Requests cross provider boundaries, access to data
occurs from multiple locations, while updates decrease.

Suppose a new storage service is about to join the network.
It does not know the clients it will serve. It is also unaware of
the particular service interaction characteristics when serving
these clients. The new service, however, needs to learn of
the most significant properties to optimally select amongstthe
existing services for storing and querying data in the service
network. For the remainder of this paper, we discuss our
approach and findings in the scope of one client for sake of
clarity.

B. Approach

For a freshly added service, the significant services are the
ones most likely to accept forwarded requests. To this end, we
need to identify the properties that determine whether a request
is accepted or not. Our approach, thus, focuses on public
service information and observable service interactions.In the
early stages of our scenario, services with versioning capability
are suitable receivers. In later stages, services at remoteservice
providers (i.e., different organizations) or different locations
provide most benefit by distributing load.
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Fig. 1. Property checking, evaluation, and ranking

Figure 1 visualizes the approach comprising the following
steps: based on the distribution of property values across
services, we derive candidate properties (1). These candidates
yield high potential impact on service interaction. For example,
when all observed services reside within a single data center,

location yields no interaction impact. Similarly, the service
identifier property yields no impact neither, as every service
exhibits a distinct ID. Thus, neither location nor service
identifier become candidates.

Any changes in service properties (including new/leaving
services) trigger recalculation of candidate properties.As long
as requests traverse only services of one provider,Organi-
zation will not become a candidate. Once the customer in
our example enables access to data for 3rd parties, requests
from external services will occur. As multiple organization
values emerge, the organization property becomes a potential
selection parameter.

The subsequent detailed interaction analysis (2) considers
only the properties with highest potential impact (e.g., ver-
sioning capability). The analysis focus will shift to otherprop-
erties when their potential impact measurement significantly
changes.

Interaction analysis determines whether services tend to in-
teract with services exhibiting the same or different properties
(3). This process runs regularly to maintain up-to-date impact
measurements. In the early stages of our scenario, services
without versioning capability will forward requests to services
with versioning capability. These in turn, will forward only
between their kind.

Impact magnitude influences the final ranking order of
suitable services (4). The versioning capability will exhibit
highest impact on the ranking result, when forwarding occurs
only from non-versioning to versioning services. Later in the
scenario, we replace the ranking criteria as capabilities become
less significant, while spatial and organizational properties
emerge.

The motivating scenario involves only a sample set of
properties. We provide a generic formalism to determine
impact potential and actual impact magnitude for any type
of properties. We briefly review related work before providing
the underlying mathematical model and algorithms.

III. RelatedWork

Most frameworks and algorithms rely on a-priori definition
of relevant adaptation parameters. Related work in the domain
of autonomic computing [3] mostly requires either complete
global information or suffices with limited local context.

Quitadamo et al. [4] demonstrate a knowledge-network
driven approach to service selection and aggregation. An-
dreolini et al. [12] exploit load trends for autonomic request
forwarding between geographically distributed systems.

Maximilien and Singh [13] combine QoS parameters and
trust based on service interactions to find the best service.
Focusing purely on self-adjusting trust, they assume fixed
individual preferences that do not change under different
conditions. This shortcoming is partially addressed by Bottaro
and Hall [14] who focus on event-driven adaptive service
selection using, however, only local context information.

Colman [15] proposes a hybrid approach to self-
organization services through hierarchical structuring of au-
tonomic managers and services. We expect services to self-



organize their interactions, whereas Colman requires the auto-
nomic manager to monitor and control all composed services,
thereby severely limiting the size of manageable service com-
positions.

Jennings et al. [16] discuss an architecture for autonomic
management of communication networks. They suggest ap-
plying the MAPE-K cycle to a complete set of entities, thus
limiting the architecture’s applicability to domains exhibiting
a central set of goals.

Goal-oriented approaches to dynamic service selection re-
quire either a complete global view on all involved entities[5],
[6] or utilize local context only [17].

Emergence-based, self-organizing approaches in the domain
of autonomic communications [18] inherently lack a clear
distinction between regular component functionality and au-
tonomic adaptation.

In Self-Configuring Socio-Technical Systems [19], Bryl and
Giorgini describe a multi-agent system reacting to dynamic
reconfiguration needs. Saffre et al. [20] present an algorithm
that results in self-organizing behavior of services. Member-
ship properties enable the algorithm to achieve the desirable
behavior using again only local context information. However,
the type and impact of context information is a-priori defined.

Dynamically identifying the most relevant parameters
for self-adaptation includes research by Zhang and
Figueiredo [21]. Their bayesian network based autonomic
feature selection, however, focuses exclusively on service
internal measurements and thus neglects any form of
interaction data. Marinescu et al. [22] measure the importance
of properties on system self-organization, but focus on the
impact of gene diversity.

IV. Property EntropyModel

In large-scale networks, service interaction analysis is a
computationally intensive task. Knowing which aspects will
yield the most significant findings maximizes the efficiency
of the analysis process. The primary purpose of a suitable
metric is thus to identify those properties, that potentially have
a measurable impact on interactions. Such a metric must work
on properties consisting of any number of values, and enable
comparison of properties that differ in their amount of values.
Example service properties include the organization deploying
the service, the service location, storage capacity, and request
routing capability (e.g., none, random neighbor, round-robin).

The following model and entropy metric calculates the
distribution of properties across services. Table I gives a
summarized explanation of the symbols applied in the model
and impact algorithms.

The metric output for each property is in the interval [0, 1].
A metric value v towards 0 describes a trend of services
sharing the same property values, while a metric value to-
wards 1 denotes services exhibiting individual property values.
Extreme cases include all services having the same property
value (v = 0) and each service having a distinct property value
(v = 1).

Symbol Meaning
S the set of servicess ∈ S in a service networkN
P the set of public properties in the service networkN
P a particular public propertyP ∈ P comprising any

number of property valuespi → pn ∈ P
F a function mapping each services to one property value

p for each public propertyP
PDE(S , P) the property distribution entropy for particular property

P and service setS
PDElower|upper a function describing the minimum (maximum) PDE

values for a given number of property valuesp ∈ P
utilupper|lower a function describing the minimum (maximum) utility

along the lower (upper) PDE limits.
E set of interaction edges in the directed service interac-

tion graphG
clusterP(i) set of services exhibiting the same property valuepi ∈ P
trendP(i) interaction focus (internal or external) of a cluster

associated topi ∈ P
impP(i) interaction impact of a cluster associated topi ∈ P
impP overall interaction impact of propertyP
d iteration count within the zero model analysis

TABLE I
Symbols applied in the entropy model (upper section) and evaluation

algorithm (lower section).

In our model, a service networkN(S,P) is defined as a
set of servicesS exhibiting a set of public propertiesP. Each
propertyP ∈ P consist of a set of non-overlapping property
valuesp1 . . . pn. In addition, for each propertyP there exists a
mappingF (S 7→ P) such that each services ∈ S is assigned
to exactly one value instancep ∈ P, ultimately establishing the
property matrix (Figure 1 input to Step 1). Whether properties
are numerical values, strings, or enumerations is irrelevant as
the functionF establishes a unambiguous mapping. For each
propertyP, we define the Property Distribution Entropy (PDE)
as follows:

PDE(S , P) = 1−
n

∑

i=1

(

|pi|

2

)

∗

(

z
2

)−1

(1)

where|pi| is the number of services mapped to property value
pi ∈ P and z = |S | is the total number of services inC.

For this entropy metric, there exists a lower and a upper
limit given q = |P| and z = |S |. Figure 2 (a) visualizes the
lower and upper entropy limits forz = 15 andq = [1, 15]. The
lower limit describes the most asymmetric distribution ofq
property values across all services. For anyq = [1, . . . , c] one
large group ofz− (q−1) services will share the same property
value andq−1 services will exhibit individual property values.
The lower entropy limit PDElower is defined as:

PDElower(z) = 1−
q2 − (2z + 1)q + z2 + z

z2 − z
with 1 ≤ q ≤ z

(2)
The upper entropy limit describes the most symmetric distri-

bution of given property values across all services theoretically
possible. There existq groups of z

q services having a distinct
property value. The upper entropy limit PDEupper is defined
as:

PDEupper(z) = 1−
(z − q)

q(z − 1)
with 1 ≤ q ≤ z (3)
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Fig. 2. Entropy limits (a), utility boundaries (b), and overall utility function (c) for c = 15

The algorithm presented in the next section determines if the
impact results in interactions occurring predominantly between
services exhibiting the same property values, between services
of different property values, or between services without
any distinct interaction bias. First, we need to evaluates a
property’s likelihood of having an impact on interactions.

To this end, we introduce upper and lower entropy utility
functions. These utility functions describe the ratio of services
that have a choice to communicate either with services of
the same property value or with services exhibiting different
property values. Only these services generate interactions that
exhibit potential property impact [23], [24].

The lower entropy utility functionutillower corresponds to
the lower entropy limit (PDElower). It reflects the fact, that
q − 1 services can only communicate with services exhibiting
a different property value, and thus cannot be included in
the impact calculation. Consequently, as individual property
values become more common (i.e., entropy value→ 1),
the likelihood reaches 0. In contrast, as services increasingly
share the same property value (i.e., entropy value→ 0) any
interactions across properties must be considered outliers and
the likelihood similarly decreases towards 0.

utillower(z) = 0.5− | − 0.5−
1− q
z − 1

| 1 < z, 1 < q ≤ z (4)

The upper entropy utility functionutilupper corresponds to the
upper entropy limit (PDEupper). It peaks where all entities are
equally distributed across two property values and decreases

steadily as the number of distinct property values rise.

utilupper(z) =
z − q
2− q

∀0 < z, 2 < q ≤ z (5)

Figure 2 (b) visualizes the lower and upper entropy utility
function for z = 15 andq = [1, 15]. We aggregate upper and
lower utility functions in the overall utility function utiltotal

defined as follows:

utiltotal(z, pde) =
(pde − PDElower)

PDEupper − PDElower
∗ utilupper

+
(PDEupper − pde)

PDEupper − PDElower
∗ utillower (6)

whereutilupper returns the utility value for the upper entropy
limit, andutillower returns the utility value for the lower entropy
limit. The total value combines the two utility values propor-
tional to the distance of the entropy value and the respective
upper and lower boundaries (PDEupper, PDElower). Figure 2
(c) visualizes the overall utility function which providesa
likelihood measurement in the interval [0, 1].

V. Property Impact Evaluation Algorithm

The PDE model provides the means to identify promising
impact properties. In the subsequent step we need to evaluate
whether these candidate properties have indeed an impact on
service interactions. We define a positive impact of a property
value on a group of services when these services tend to
communicate with each other (i.e., internal communication),



rather than interacting with services exhibiting different prop-
erty values. A negative impact implies a tendency towards
external communication.

Algorithm 1: Impact Evaluation AlgorithmA(G(S , E), P)

function CalculateImpact(G(S , E), P)
Dev← call AnalyzeZeroModel(P,G)
for all Clustersc ∈ P do

nRatio← |c|/|V |
cRatio← call CalcLinkRatio(c,G)
di f f = |nRatio − cRatio|
if di f f ∗ util(P) > 2 ∗ Dev[c] then

if cRatio > nRatio then
/* trend for internal communication */
trend = di f f /(1− nRatio)

else
/* trend for external communication */
trend = di f f /nRatio ∗ −1

end if
setTrend(c, trend)

else
setTrend(c, 0)

end if
end for

end function

function AnalyzeZeroModel(p,G)
Dev[] ← ∅
for i = 1 to d do

R← randomizeAcrossPartitions(G, clusterS izes(P))
for all Clusterr ∈ R do

nRatio = |r|/|V |
cRatio← call CalcLinkRatio(r,G)
di f f = |nRatio − cRatio|
if cRatio > nRatio then

dev = di f f /(1− nRatio)
else

dev = di f f /nRatio
end if
Dev[r] ← Dev[r] + dev

end for
end for
for i = 1 to |C| do

Dev[i] ← Dev[i]/z
end for
return Dev

end function

function CalcLinkRatio(c,G)
intra = countLinksWithinCluster(c,G)
total = countLinksO fCluster(c,G)
edgeRatio = intra/total
return edgeRatio

end function

Viable service invocation collection techniques include
logging[9], monitoring [10], and sensing [11]. The union ofall
service invocations create a directed interaction graphG(V, E).
The graph’s edgesE denote service invocations and the nodes
V represent all servicesS ∈ N participating in the service
network. For each propertyP, we refer to the set of services
exhibiting the same property valuep as a networkcluster.

For the impact evaluation process (Algorithm 1), we select
properties with highestutiltotal. For every cluster, thecRatio
calculates the ratio of property internal to total communication
links. The natural link rationRatio of a cluster in an unbiased
network is |cluster| / |S |. To include the characteristics of
the underlying interaction network, we create a zero model
by distributing all services randomly across clusters of the
same size. Multiple rounds of randomization yield a natural
deviation of each cluster ratio from the natural ratio. To
enable comparison of clusters independent of their natural
ratio (nRatio) any deviation fromnRatio is mapped to the
interval [−1,+1], where atrendP(c) of −1 indicates complete
external orientation, and+1 complete internal orientation. This
orientation is defined as:

trendP(c) =















cRatioc−nRatioc
1−nRatioc

i f cRatioc > nRatioc,

−
cRatioc−nRatioc

nRatioc
i f cRatioc ≤ nRatioc

(7)

and the impact of clusterc for PropertyP is defined as:

impP(c) =















trendP(c) i f |trendP(c)| ∗ utiltotal(P) > 2 ∗ devc

0 otherwise
(8)

whereutiltotal(P) is the utility of propertyP and devc is the
zero model deviation for the clusterc. Taking twice devc

and reducing further byutiltotal(P) ensures that also for low
likelihood values the deviation is sufficiently distinct.

A property p needs not necessarily consist of uniform
cluster trends. Internally oriented, externally oriented, and
unbiased clusters can coexist. Aggregating all trends propor-
tionally to their corresponding cluster size yields the overall
property importance value:

impP =

∑n
i=1 |impP(i)| ∗ |clusterP(i)|

|S |
(9)

We continue to consider only properties with the highest
impact impP for further interaction analysis as outlined in the
following section.

VI. Service Ranking Algorithm

The calculation and evaluation of property utility, impact,
and impact trend is node independent. When a new ser-
vice joins the network, the ranking algorithm applies these
global metrics to generate a recommendation specific to the
newcomer. For the properties with highest impact, we select
the cluster identified by the newcomer’s properties. For each
cluster, we derive its interaction affinity towards other clusters.
The affinity function affinity(G, c1, c2) describes the likelihood
of a new request inc1 being forwarded toc2. The special



casec1 = c2 covers internal request delegation. The function
is defined as:

affinity(G, c1, c2) =
|links(c1→ c2)|
|links(c1→ G)|

(10)

where links(c1 → c2) selects all links starting in clusterc1

and ending in clusterc2, respectively ending anywhere in the
network G including c1. In a directed graph, affinity is not
reciprocal, thus affinity(G, c1, c2) , affinity(G, c2, c1)∀c1 ,
c2.

Our ranking algorithm builds on top of any existing
selection mechanism that fulfils following three conditions:
(i) returned candidate services are potential communication
partners, (ii) services are ranked by their domain specific
capability, (iii) services map to ranking scores that reflect
the relative match amongst all selected services. A mere
list representing the service’s rank is insufficient. In case of
failing these conditions, our ranking algorithm considersall
candidates as equally suitable.

Algorithm 2: Update Ranking ResultsA(new,R, PP)

function RankingResultUpdate(new,R, PP)
/* Modifies the ranking results based on property im-

portance and affinity * /
for all ResultEntry r ∈ R do
/* affw collects all effects on candidate rank */
a f f w = 0
for all Property P ∈ PP do

cnewcomer ← getCluster(P, new)
ccandidate ← getCluster(P, r)
affinity = calcAffinity(cnewcomer, ccandidate)
affw = affw + affinity ∗ impact(P)

end for
updateRank(r, getRank(r) ∗ a f f w)

end for
sort(R)

end function

The basic idea is to apply cluster affinity values to update
the candidate’s rank. Algorithm 2 demonstrates the precise
steps. For each candidate and all properties of significant
impact, as identified in the previous section, we select the
newcomer’s clustercnewcomer and the candidate’s cluster
ccandidate. We subsequently retrieve the affinity value of
cnewcomer towards ccandidate. Candidates in clusters with low
affinity are penalized more than candidates in clusters of
frequent request forwarding. Affinity values do not modify
ranks to their full extend but only proportional to the
respective property impactimpP(c). For each candidate the
sum of all weighted affinity values determines the extend to
which the ranking result is reduced or increased. Finally, the
updated candidate list is sorted again. The newcomer service
can then select among the top ranked existing services for
successful request forwarding.

Recommending services from clusters that have received
many requests in previous rounds achieves desirable preferen-
tial attachment characteristics. Independent from the number
of services, the recommendation algorithm ensures its persist-
ing applicability as the service network grows.

A. Discussion of Computational Complexity

The computational complexity of our approach depends on
following factors: the total number of servicesz, the number of
public properties|P| and the number of their respective values
q, the number of service interactions|E|, and the number of
graph randomizationsd. Table II lists the worst case runtime
complexity for the various processing steps.

Step Complexity
Service to Property Mapping O(z ∗ q)
Entropy Calculation O(|P| ∗ q)
Interaction to Cluster Mapping O(|E| ∗ |P|)
Cluster Analysis O(|P| ∗ q2)
Zero Model Analysis O(|E| ∗ |P| ∗ d)

TABLE II
Runtime Complexity

From this overview, theCluster Analysis appears to inhibit
scalability the most. However, by restrict analysis to properties
with highest entropy valuePDE, the maximum value of
observed property valuesq will grow slower than the number
of total services.

VII. Evaluation and Experiments

This section demonstrates the effectiveness of our approach
based on the motivating scenario. This includes a step by step
walk-through of metric computation and analysis of multiple
properties. We simulate a service network in the second partof
this section. The simulation compares the benefit of applying
our service ranking algorithm to a trial-and-error selection
in terms of accepted and rejected invocations. Throughout
the experiment, we measure only the benefit experienced
by a newcomer service. In real-world settings, however, any
services is free to utilize the ranking algorithm.

A. Scenario

We observe a limited number of services in the network for
sake of clarity. The recommendation process observes three
public properties: (i) Location (L1. . . L9), (ii) Organization
(O1. . . O4), and (iii) Capability (C1. . . C3). Table V (upper
part) outlines the mapping of 14 existing services and one
newcomer (S15) to the three properties. This configuration
yields the property distribution entropy metric (PDE), corre-
sponding entropy limits (PDEupper, PDElower), and respective
utility in Table III.

Analyzing the weighted interaction graph in Table V (lower
part), we detect the impact values depicted in Table IV. For
Location and Organization, we derive impact only for L5,
respectively O3, in both cases a strong external trend. For
Capability, the interaction graph results in a strong external
trend for all three property values (C1, C2, and C3). Hence,



Property PDE PDElower PDEupper utiltotal
Loc 0.945 0.835 0.957 0.411
Org 0.802 0.396 0.808 0.826
Cap 0.626 0.275 0.718 0.772

TABLE III
PDE,limits, and utility values for Location, Organization,

and Capability properties.

Property Total
Location L1 L2 L3 L4 L5 L6 L7 L8 L9
Impact 0 0 0 0 -1 0 0 0 0 0.07
Organization O1 O2 O3 O4
Impact 0 0 -0.95 0 0.20
Capability C1 C2 C3
Impact -0.86 -1 -0.92 0.92

TABLE IV
Property Impact Evaluation Results

for service S15 with properties (L9, O3, C1) and randomly
chosen neighboring services (S2, S4, S7, S9, S11, S12, S14),
we arrive at the ranking results printed in the rightmost column
of Table V.

Service S2 is ranked highest. As propertyCapability has
the strongest impact on the interaction network, we put most
weight on affinity values amongst property values C1, C2,
and C3. In our scenario, services of type C1 tend to forward
requests to service of type C2, C2 to C3, and C3 back to C1.
The ranking result thus recommends service S15 to forward
requests primarily to S2 as S2 is the only neighbor of S15
exhibiting property C2.

B. Simulation Setup

Simulation-based evaluation allows for analyzing our rec-
ommendation algorithm under changing conditions with re-
spect to property count, property impact, service network size,
and impact fluctuations. We focus only on the behavioral
characteristics of our algorithm and do not consider the costs
of network monitoring. Chen et al. [25] follow an algebra-
based approach to efficient network monitoring.

The simulation environment consists of|S| = n services.
Each service exhibits|P| = m property values, corresponding
to m distinct properties. Services have the capability to forward
a received request to another service from their service neigh-
borhoodh or reject it. For each property, an acceptance matrix
M simulates the impact of current requirements on the service
interaction structure. The matrix provides the likelihoodof
any service with property valuepi to accept a request from a
service with property valuep j. As the simulation progresses,
we adapt the importance weight of the various property ma-
trixes to reproduce the dynamic requirement changes. TableVI
provides a snapshot of an acceptance matrix for property
Organization comprising four property values. In this example,
request forwarding occurs in a circle.

from/to O1 O2 O3 O4
O1 0 1 0 0
O2 0 0 1 0
O3 0 0 0 1
O4 1 0 0 0

TABLE VI
Example acceptance matrixM for four organization property values

O1 . . .O4 exhibiting maximal constraints.

In each simulation round, services receiver randomly
assigned requests. Each service then selects a member from its

neighborhood to forward the request to. The receiving service
then chooses to accept or deny the request. In the former case,
the request is considered successfully completed. In the latter
case, the sending service receives 1 penalty point and has to
find another service to forward the request to.

Although services apply the acceptance matrix for incoming
requests, they do not utilize this information for outgoing
requests. Instead, they engage the proposed ranking algorithm.
The algorithm then applies the analyzed public properties and
service interactions as described in the previous sections. To
eliminate any effects of domain specific ranking, the simula-
tion assumes all services are equally able to process a request.
We calculate the benefit of our recommendation algorithm
by comparing the penalty a newcomer service receives when
contacting neighbors by trial-and-error and when contacting
the recommended neighbors.

In all experiment iterations, we assign random requests to
services each round to simulate service load fluctuations. To
keep the overall network load constant, however, the average
number of assigned requests per service is fixed atr = 20.

C. Measuring Scalability

First, we demonstrate the scalability of our approach. We
increase the number of services (n), service neighborhood (h),
and property values (pm). In each round, we measure for each
newly added service the penalty received in the process of
successfully forwarding a single request to a random neighbor,
respectively a recommended neighbor.

The initial service network consists ofn = 50 services,
each havingh = 24 random neighbors. Four properties (P1
. . . P4) exhibiting|p| = 7, 5, 4, and 4 values respectively exert
impact via their acceptance matrixes. As we add a new service,
we connect it with random 20+ log(n)2 existing services.
Additionally, we link randomlog(n) existing services with the
newcomer. For the four properties (P1 . . . P4), the simulation
introduces new property values at a growth rate oflog(n).

Figure 3 prints the average benefit for every 50 consec-
utive benefit measurements over multiple experiment runs.
On average, the recommendation-based approach outperforms
the trial-and-error approach across scales. At the end of the
scalability experiment, the final service network comprises
10050 services, each linked to 105 neighbors on average. Each
of the four properties exhibit nine more values, bringing the
number of choices to|p| = 16, 15, 14, and 13 respectively. The
recommendation algorithm yields similar good results for this
configuration as for the initial service network.



ServiceId S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15
Location L1 L2 L1 L2 L3 L4 L5 L6 L7 L8 L9 L4 L8 L9 L9

Organization O1 O2 O3 O4 O1 O2 O3 O4 O1 O2 O3 O4 O1 O2 O3
Capability C1 C2 C3 C1 C2 C3 C1 C2 C3 C3 C3 C3 C3 C3 C1

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 Rank
S1 0 0 0 0 35 0 0 0 0 0 0 0 0 0 -
S2 0 0 0 0 0 0 0 0 0 0 0 0 0 43 91.50
S3 33 0 0 6 0 0 0 0 0 0 0 1 0 0 -
S4 0 33 0 0 0 0 0 5 0 0 0 0 0 0 17.77
S5 0 0 0 0 0 0 0 0 0 26 0 0 8 0 -
S6 2 0 0 0 0 0 27 0 0 0 2 0 0 0 -
S7 0 0 0 3 16 1 0 0 1 3 0 0 0 0 3.05
S8 0 0 0 0 0 0 0 0 0 31 1 0 0 0 -
S9 3 0 0 0 0 0 29 0 0 0 0 0 0 0 15.37
S10 0 3 0 28 0 0 0 0 0 0 2 1 2 0 -
S11 0 0 1 32 2 0 0 0 0 0 0 1 0 0 4.95
S12 0 0 0 37 0 0 0 0 0 0 0 0 0 0 13.74
S13 47 0 0 0 0 0 0 0 0 0 0 0 0 0 -
S14 0 0 1 29 2 0 0 0 0 2 0 1 0 0 5.57

TABLE V
Service network: weighted directed graph including ranking results for S15.
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Fig. 3. Average benefit for service recommendation comparedto trial-and-error selection. Numbers display aggregation of 50 new services within a service
network growing from 50 to 10050 services.

D. Measuring Adaptiveness

We have shown scalability for fixed impact of the four
properties (P1 . . . P4). Here, we demonstrate the adaptability
of our approach. Along these lines, we dynamically change
the impact weights of the respective acceptance matrixes
(M1 . . .M4) every 10 rounds while measuring the quality
of the recommendation result every round. The number
of servicesn = 50, their neighborhood sizeh = 24, and
the property values (pm) remain constant. As we keep the
number of services fixed, we select in each round a random
existing service to measure the penalties for recommended
and trial-and-error neighbor selection.

We analyze 30 experiment iterations, each comprising 100
impact changes. Figure 4 prints the benefit (and standard
deviation) received for applying recommended selection for
each of the 10 rounds after the property impact change. We
observe lower—but still positive—benefit measurements for
the first two rounds after a change. As the algorithm self-
adjusts, average benefit increases to 2.

E. Measuring Constraint Impact

The realizable benefit heavily depends on the constraints
on the service network. When lack of constraints result in
high acceptance rates, any random neighbor will most likely
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Fig. 4. Average benefit for each round following a property impact change.

be a suitable selection. The ranking algorithm will provide
considerable benefit once constraints emerge and begin to
increasingly restrict service interactions.

In the third experiment, we start with four properties (each
having 10 property values) allowing interactions between any
clusters (i.e., the corresponding acceptance matrixes arefilled
with 1s). Every 10 rounds, we randomly select one particular
property and increase the constraints. As we continue to
replace random 1s with 0s in the acceptance matrix, the trial-
and-error approach yields increasing penalties. We continue
increasing the constraints until every acceptance matrixM
contains a single 1 on each row (e.g., Table VI). Thus, for
every propertyP, a service of any particular property value
px ∈ P only accepts requests from services exhibiting a single
other property valuepy ∈ P (including x = y). Throughout the
experiment, property impact and service count remain fixed.

Figure 5 presents the average penalty difference over 10
iterations of n = 50 services having on averageh = 24
neighbors. Benefits start rising around round 1750. Around
3800, this growth levels off as the constraints can no longer
be intensified.

F. Experiment Discussion

The simulation reflects the key challenges outlined in the
introduction to reproduce the constraints found in real world
service networks. First, services provide only public informa-
tion on their various static properties. Second, the decision
process for selecting a suitable receiving service relies purely
on dynamic information. Third, services accept incoming
requests based only on internal, non-observable information
(i.e., defined by the acceptance matrix). Finally, no service
obtains a complete view on service interactions.
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Fig. 5. Average benefit for service recommendation comparedto trial-and-
error approach for increasing constraints. Numbers display aggregated benefit
of 50 consecutive measurements.

Despite these challenges, our model and algorithms perform
significantly better than trial-and-error service selection. When
comparing average, absolute penalty measurements (Figure6),
the ranking algorithm results in 2.5 times lower penalties
during the scalability experiment, and 2.7 times lower penalties
during the adaptivity experiment, respectively. The thirdexper-
iment displays 2.1 times lower penalties averaged over the final
1500 rounds. For both scalability and adaptivity experiments,
our algorithm requires on average slightly more than a single
forwarding retry (i.e., one rejected request). The trial-and-error
approach, in contrast, results in approximately three retries.
The constraint measurement displays higher failure rates.Our
recommendation algorithm requires less than 2.5 retries, while
trial-and-error selection causes 5 rejections.

At this stage, we cannot predict the algorithm’s performance
in real world implementations. However, our simulations yield
very promising results and demonstrate both scalability and
adaptiveness of our approach.

VIII. Outlook and Conclusions

Self-Organization of services requires knowledge of the sig-
nificant properties determining service interactions. We have
presented a model identifying potential properties. Our impact
evaluation algorithm further reduces this set by determining
properties with maximum impact on service interactions. Our
service recommendation algorithm subsequently ranks suitable
request receivers based on the aggregated interaction charac-
teristics. Experimental evaluation has demonstrated bothscal-
ability and adaptiveness of our approach. Although focusedon
data services, our findings apply also to general compositions
comprising services and human entities.
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We will continue to aim for enabling services with increas-
ing degree of self-adaptiveness. To this end, we plan extending
the set of algorithms utilizing the property distribution entropy.
We will also investigate optimal strategies to combine random
and ranked selection under varying constraints.
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